2.6 Setup Project Structure
This repository contains the following structure to start with. The *.sample
folders or files are there for reference only, so you can check your work.
| data/ # Contains application data (initial)
docs/ # Contains docs and guides (content)
src.sample/ # Sample src/ folder
.env.sample # Sample .env file
|
1. Define src/
folder for code
In this workshop, start by creating a new src/
folder and populating it from scratch to get a sense for the development workflow. Start by creating this folder structure:
| mkdir src/
mkdir src/api
mkdir src/api/assets
|
Your directory structure should now look like this:
| data/
docs/
src.sample/
.env.sample
src/
src/api
src/api/assets
|
2. Add src/config.py
helper script
For convenience, let's copy this from the sample location - then review the code to see what it does. Use this command at the root of the repo:
| cp src.sample/api/config.py src/api/.
|
Expand the code below to get a sense of what this helper does.
- Sets the
ASSET_PATH
to the assets/
folder in the same directory.
- Configures the app logger and enables telemetry logging (traces) for app.
Click to expand and view the helper script
src/api/config.py |
---|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54 | # ruff: noqa: ANN201, ANN001
import os
import sys
import pathlib
import logging
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
from azure.ai.inference.tracing import AIInferenceInstrumentor
# load environment variables from the .env file
from dotenv import load_dotenv
load_dotenv()
# Set "./assets" as the path where assets are stored, resolving the absolute path:
ASSET_PATH = pathlib.Path(__file__).parent.resolve() / "assets"
# Configure an root app logger that prints info level logs to stdout
logger = logging.getLogger("app")
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler(stream=sys.stdout))
# Returns a module-specific logger, inheriting from the root app logger
def get_logger(module_name):
return logging.getLogger(f"app.{module_name}")
# Enable instrumentation and logging of telemetry to the project
def enable_telemetry(log_to_project: bool = False):
AIInferenceInstrumentor().instrument()
# enable logging message contents
os.environ["AZURE_TRACING_GEN_AI_CONTENT_RECORDING_ENABLED"] = "true"
if log_to_project:
from azure.monitor.opentelemetry import configure_azure_monitor
project = AIProjectClient.from_connection_string(
conn_str=os.environ["AIPROJECT_CONNECTION_STRING"], credential=DefaultAzureCredential()
)
tracing_link = f"https://ai.azure.com/tracing?wsid=/subscriptions/{project.scope['subscription_id']}/resourceGroups/{project.scope['resource_group_name']}/providers/Microsoft.MachineLearningServices/workspaces/{project.scope['project_name']}"
application_insights_connection_string = project.telemetry.get_connection_string()
if not application_insights_connection_string:
logger.warning(
"No application insights configured, telemetry will not be logged to project. Add application insights at:"
)
logger.warning(tracing_link)
return
configure_azure_monitor(connection_string=application_insights_connection_string)
logger.info("Enabled telemetry logging to project, view traces at:")
logger.info(tracing_link)
|
CONGRATULATIONS! Your development environment is ready to use.